ꀅ 简体中文
  • 简体中文
  • English
  • 登录
  • 注册
退出
  • 产品
  • 应用案例
  • 技术支持
  • 关于我们
    • 蒸渗仪
    • 气体通量
    • 根系
    • 元素
    • 生态因子
    • 智慧农业
    • 混凝土水分
      • SoilScope 控制型蒸渗实验系统(称重式地中蒸渗仪)

        넶1273 ¥ 0.00
      • LysiCosm 碳氮水耦合过程监测系统

        넶717 ¥ 0.00
      • SmartSoil 野外增温试验系统

        넶439 ¥ 0.00
      • ENVIdata-ET 原位蒸散网络化监测系统

        넶519 ¥ 0.00
      • soilgas便携式温室气体监测仪

        넶230 ¥ 0.00
      • iChamber群落全株自动箱

        넶401 ¥ 0.00
      • CPEC-AZ升级涡度通量及土壤通量同步观测系统

        넶551 ¥ 0.00
      • EcoChem激光光谱元素分析系统

        넶1539 ¥ 0.00
      • AZR-300复合根系生长动态监测系统

        넶1786 ¥ 0.00
      • Rhizoscope原位根系3D观测系统

        넶651 ¥ 0.00
      • RhizoCam 原位自动根系监测系统

        넶884 ¥ 0.00
      • AZR-300TF复合根系荧光监测系统

        넶632 ¥ 0.00
      • EcoChem 种质资源检测鉴定系统

        넶54 ¥ 0.00
      • EcoChem 中药材元素富集分析系统

        넶56 ¥ 0.00
      • EcoChem 中药材溯源分析系统

        넶55 ¥ 0.00
      • EcoChem 土壤质量监测与评价观测系统

        넶67 ¥ 0.00
      • iChamber群落全株自动箱

        넶401 ¥ 0.00
      • IRRIScope 灌溉指导器

        넶342 ¥ 0.00
      • SeedScope 数字化育种控制实验系统

        넶305 ¥ 0.00
      • AIM-WiFi土壤多参数监测系统

        넶1133 ¥ 0.00
      • AZG-300便携式土壤水体温室气体监测仪

        넶1507 ¥ 0.00
      • EcoCS 生态碳汇能力监测

        넶757 ¥ 0.00
      • iChamber-60 群落光合呼吸测量系统

        넶401 ¥ 0.00
      • SONO-M1M2便携式水分速测仪

        넶444 ¥ 0.00
      • SONO-WZ混凝土水分含量/水胶比测量仪

        넶293 ¥ 0.00
      • SONO混凝土在线监测水分传感器

        넶261 ¥ 0.00
      • SONO-Ex谷物水分测量系统

        넶263 ¥ 0.00
    • 蒸渗仪
    • 生态因子
    • 气体通量
    • 根系
    • 智慧农业
    • 元素
    • 混凝土水分
      • 2025-04-18
        ENVILog-100土壤水分温度监测系统在河南省自然资源监测院安装完成
      • 2025-04-18
        SoilScope控制型蒸渗实验系统应用I江西水土保持生态科技园建成先进蒸渗仪监测平台
      • 2025-04-11
        SoilScope控制型蒸渗实验系统应用I四川省农科院蒸渗仪系统运维工作圆满完成
      • 2025-03-21
        SoilScope控制型蒸渗实验系统应用I江西水土保持生态科技园蒸渗系统安装完成
      • 2024-10-11
        SoilScope控制型蒸渗实验系统应用I2024年川渝地区蒸渗仪运维工作圆满完成
      • 2024-06-28
        SoilScope控制型蒸渗实验系统应用I安徽水科院五道沟水文站蒸渗仪运维工作圆满完成
      • 2024-06-18
        AF-SF-1地表径流监测系统运用于研究亚热带山地丘陵集水区植被恢复对土壤水文功能的影响
      • 2024-06-12
        SoilScope控制型蒸渗实验系统应用
      • 2025-04-11
        兰州资源环境职业技术大学ENVIdata-P植物生理生态测量系统成功安装
      • 2025-04-11
        AIM-WiFi IPH/Pico-64在中科院遗传与发育生物学研究所完成培训验收
      • 2025-03-21
        河北工程大学ENVIdata-DT土壤水温电导率测量系统成功安装
      • 2025-03-21
        吉林农业大学菌菜基地ENVIlog-600遥测气象站安装完成
      • 2025-02-28
        ENVIdata科研级生态气象系统在水利部节水灌溉示范基地安装完成
      • 2025-01-24
        ENVIdata-DT土壤水温电导率测量系统用于盐碱地改良监测
      • 2025-01-03
        SoilScope控制型蒸渗实验系统应用I通辽市水务局蒸渗系统安装完成
      • 2025-01-03
        ENVIdata科研级生态气象系统在山东东营市利津安装点完成
      • 2025-05-16
        土壤呼吸作用测量系统(AZG-300)在重庆大学完成培训验收
      • 2025-03-14
        AZG-300便携式土壤水体温室气体监测仪在四川省核地质调查研究所安装培训完成
      • 2024-11-22
        清华大学Aerodyne地气交换通量观测系统通过验收
      • 2023-11-01
        内蒙古农牧科学院Aerodyne痕量气体观测系统完成安装验收
      • 2023-08-03
        内蒙古自治区农牧业科学院N2O、CH4和CO2痕量气体观测系统
      • 2023-07-27
        基于城市高塔的异位通量观测系统的应用实例
      • 2023-02-15
        六种痕量温室气体同步测量系统标定过程和结果
      • 2025-04-25
        新疆农科院AZR-300根系生长监测系统完成安装调试
      • 2025-03-28
        文献分享—利用微根窗技术监测根区直接灌溉对作物根系分布的影响
      • 2025-03-14
        华南农业大学大学AZR-300 复合根系生长监测系统完成培训验收
      • 2025-03-14
        AZR-300TF复合根系荧光监测系统在成都理工大学完成验收
      • 2025-03-14
        AZR-300复合根系生长动态监测系统在四川省核地质调查研究所安装培训完成
      • 2024-12-13
        AZR-300(摄像版)在中国林科院高原研究所完成培训验收
      • 2024-12-13
        ENVIdata-DD植物茎流监测系统在西北农林科技大学完成验收
      • 2024-12-06
        AZR-300在清华大学深圳国际研究生院完成培训验收
      • 2024-09-27
        ENVIdata-ET网络化蒸散监测系统在新疆大学安装完成
      • 2024-09-27
        ENVIdata-ET网络化蒸散监测系统在内蒙古农牧科学院安装完成
      • 2024-09-27
        ichamber系统中国农业大学石羊河实验站运维工作圆满完成
      • 2024-08-22
        新疆博州灌溉试验站IRRIScope灌溉指导器完成安装
      • 2024-08-22
        IRRIScope灌溉指导器在中国科学院新乡试验基地完成安装
      • 2024-01-04
        ENVIdata-Thies标准地面气象观测站监测深圳水库环境气象参数
      • 2023-12-21
        内蒙古水科院IRRIScope灌溉指导器完成安装
      • 2023-12-07
        青海大学ENVIdata-Thies科研级气象观测系统完成安装验收
      • 2025-03-28
        玉米秸秆中化学营养成分元素富集分析
      • 2025-03-07
        石河子大学EcoChem激光光谱元素分析系统完成验收
      • 2023-04-04
        AZG-300便携式土壤温室气体监测仪用于麦田CO2、CH4排放研究
      • 2023-04-04
        AZG-300便携式土壤水体温室气体监测仪在山西大学完成安装
      • 2023-02-16
        混凝土水分测量仪应用案例
  • 作为中国第一个以“生态仪器”命名的专业仪器公司,从成立之初,澳作生态仪器有限公司就致力于引进、推广国际先进的生态环境监测技术和仪器设备,并根据国内的科研需求研发、定制生态系统监测设施和仪器。时至今日,已经走过二十年的历程。
     

    公司具有一支由实力雄厚的科研技术人员组成的团队,85% 以上具有本科或本科以上学历,其中一半人员具备硕士以上学历。公司总部位于中关村翠湖科技园云中心,在广州,南京、成都、郑州、泰安、新疆设立了营销、技术服务中心,网络化办公最大程度上给予客户周到便利的咨讯和服务。

    了解更多
끠

产品

DF活体浮游植物在线监测系统

 

一、    用途

系统主要用于活体浮游植物的在线监测,测量活体浮游植物的生物量,并对其进行分类。可广泛用于水华的长期在线监测,浮游植物初级生产力及其他生理特性的研究。系统最大特点是可以排除非活性物质及腐殖质对监测过程的干扰;同时系统采用连续激发光源,得到连续激发光谱,藻类识别更加准确。

img1

 

二、  原理

延迟荧光技术,只测量光合活性藻类,排除死亡藻类和腐殖质等的干扰,更精确的监测藻类的生长状态。

理论背景

img2

      在植物的光合过程中,被植物吸收的部分光会以荧光的形式释放出来,在光被PSII 利用之前就释放的称为瞬时荧光;因电荷复合激发叶绿素分子前,会发生随时间变化的还原反应,这将导致光的延迟释放,被称为延迟荧光(DF)。延迟荧光光谱揭示了PSI 叶绿素P700 对PSII 的电子传递效率。延迟荧光光谱技术主要用于延迟荧光两个方面的测量:延迟荧光动力学特征,即延迟荧光的消亡过程;延迟荧光光谱,即DF0随不同激发光源波长的变化。这两种方法分别用于测量活体藻类的生物量及组成。

     延迟荧光由电子回流导致的电荷重组产生,因此,只有具有光合活性的细胞才能产程延迟荧光。这种技术与瞬时荧光技术相比,具有明显的优势,它不会受到非活性物质及腐殖质的干扰。这对浅水湖或河流能起到决定性的作用,特别是那些经常发生再悬浮和洪浪,从而将一定量的退化藻类或没有光合功能的藻类带入水体的区域。延迟荧光技术逐渐成为当前藻类研究的热点技术。

三、系统功能

※ 测量活体藻类浓度,排除非活性物质及腐殖质对监测过程的干扰;

※ 鉴别藻类种类:采用连续激发光源,标准配置可识别蓝藻、绿藻(包括绿藻、裸藻等)、硅藻(包括硅藻、金藻、黄藻等)和隐藻类 4种藻类,增强版还可识别红藻(常见于海水中);

※  野外自动测量光合速率动态变化,进行藻类初级生产力的研究;

※ 连续监测藻类从产生到消亡的过程;

※ HAB 识别

四、组成

主机、自动采样单元、自动清洗单元、其他附件等

五、系统特点

img3

※ 延迟荧光技术,排除了非活性物质及腐殖质的干扰,仅测量活体浮游植物;

※ 系统设计满足在线测量的要求;

※ 触摸屏,方便操作

※ 数据下载方便,USB或网络远程传输(可选RS- 232);

※ 可实现系统的远程控制、远程数据校正及远程传输;

※ 系统高度集成,体积小;

六、 主要技术指标

img4

※  测量原理:延迟荧光技术,仅测量活体藻类

※   测量参数:活体浮游植物生物量、组成、光合特性;

※  可选测量参数:增强型植物群落识别、光-光合关系曲线;

※ 藻类分组特征光谱:6组

※  通讯接口:USB或网络远程传输(可选RS-232),对Windows操作系统和苹果Mac系统都兼容;

※   分辨率:蓝藻、绿藻(包括绿藻、裸藻等)、硅藻(包括硅藻、金藻、黄藻等)和隐藻类 4种藻类,增强版还可识别红藻,精度±5%;

※ 测量方式:可野外自动在线测量或便携测量;

※   用户界面:触摸屏,显示所有运行参数;

※  采样:12VDC 采样泵;

※ 工作模式:自动/手动;

※ 采样频率:6-10次/小时;

※  检出限:1-5ug CHl-a•l-1;

※ 电压:110-230 V AC;

※ 功率:100 W;

※ 尺寸:300 x 400 x 500 mm;

※ 其他:可选GPS定位

 

七、系统应用

img5

 

匈牙利巴拉顿湖在线监测——高度动态变化的环境中研究浮游植物群落的稳定性

2003-2004年对巴拉顿湖区的水生态因子,如水温、总辐射、光线垂直衰减、内部P负荷等进行监测,并以天为单位,对4种颜色的光合敏感藻类的时序数据进行监测,利用所得数据分析浮游植物的季节变化模式,模拟各种水华的发生过程。实验结果表明,以上所测数据可以足够地模拟各种水华的形成和衰败。

应用溶解氧的变化来验证DF

    应用Trios在线水质分析仪监测湖水中溶解氧的变化,来验证DF延迟荧光,结果表明,尽管溶解氧的定量有不确定性,延迟荧光与溶解氧的相关性很大。

img6

 

鄱阳湖、长江水体生态环境监测

    鄱阳湖水文局、长江水资源保护科学研究所等科研机构应用DF活体浮游植物在线监测仪,监测鄱阳湖和长江水体生态环境的变化情况。

八、产地   匈牙利

 

参考文献

1.       Istvánovics V., Honti M., Osztoics A., H. M. Shafik, Padisák J., Y. Yacobi and W. Eckert (2005) On-line delayed fluorescence excitation spectroscopy,as a tool for continuous monitoring of phytoplankton dynamics and itsapplication in shallow Lake Balaton (Hungary). Freshwater Biology 50:1950-1970.

2.       Honti M., Istvánovics V. and Osztoics A. (2005) Measuring and modelling in situ dynamic photosynthesis of various phytoplankton groups. Verh. Internat. Verein. Limnol. 29: 194-196.

3.       Honti M., Istvánovics V. and Osztoics A. (2007) Stability and change of phytoplankton communities in a highly dynamic environment ? the case of large, shallow Lake Balaton (Hungary). Hydrobiologia 581: 225-240.

4.       Honti M., Istvánovics V. and Kozma Zs. (2008) Assessing phytoplankton growth in River Tisza (Hungary). Verh. Internat. Verein. Limnol. 30 (1):87-89.

5.       Istvánovics V. and Honti M. (2008) Longitudinal variability in phytoplankton and basic environmental drivers along Tisza River, Hungary.Verh. Internat. Verein. Limnol. 30 (1): 105-1

6.       刘爱玲,李梅,熊丽黎。活体浮游植物在线监测结果与叶绿素a的关系研究。江西水利科技,2013,39(1)11~16

2023-02-05 17:35
ꄴ前一个: ENVIdata-ET 原位蒸散网络化监测系统
ꄲ后一个: AZ-RF人工模拟降雨试验系统
낙加入购物车
首页  ꄲ  蒸渗仪  ꄲ  DF活体浮游植物在线监测系统
  • 蒸渗仪

  • 气体通量

  • 根系

  • 元素

  • 生态因子

  • 智慧农业

  • 混凝土水分

北京澳作生态仪器有限公司

 AOZUO ECOLOGY INSTRUMENTATION LTD.

版权所有 © 北京澳作生态仪器有限公司

 [京ICP备05027125号-1]

 备案编号:京公网安备11010802009010号

快速链接

  • 首页
  • 关于我们
  • 产品
  • 应用案例

服务热线

010-82675321

地址:北京市海淀区中关村翠湖科技园 · 云中心高里掌路3号院6号楼1单元101A

电话:010-82675321 /22 /23

邮箱:sales@aozuo.com.cn

  • 新闻
  • 技术支持
  • 合作伙伴
  • 联系我们
ꁱ技术支持
 本网站由阿里云提供云计算及安全服务
本网站支持 IPv6
 本网站由阿里云提供云计算及安全服务
本网站支持 IPv6
 本网站由阿里云提供云计算及安全服务
本网站支持 IPv6
 本网站由阿里云提供云计算及安全服务
本网站支持 IPv6